
N88-  1 7 2 4 8  
Trimodal InterDretation of Constraints for Planning 

by 
David Krleger and Rlchard Brown 

MITRE Corporation, Bedford, MA 01730 

1. ABSTRACT 

Constraints are used in the CAMPS1 knowledge-based planning 
system to represent those propositions that must be true for a plan to 
be acceptable. One mode of interpreting a constraint determines its 
logical value. A second mode inverts a constraint to restrict the 
values of some set of planning variables. CAMPS introduces a third 
mode: the "make" mode. Given an unsatisfied constraint, make eval- 
uation mode suggests planning actions which, if taken, would result 
in a modified plan in which the constraint in question may be 
satisfied. 

These suggested planning actions -- termed delta-tuples -- are 
the raw material of intelligent plan repair. They are used both in 
"debugging" an almost right plan and in replanning due to changing 
situations. Given a defective plan in which some set of constraints 
are violated, a problem-solving strategy selects one or more con- 
straints as a focus of attention. These selected constraints are eval- 
uated in the make mode to produce delta-tuples. The problem- 
solving strategy then reviews the delta-tuples according to its appli- 
cation and problem-specific criteria to find the most acceptable 
change in terms of success likelihood and plan disruption. Finally, 
the problem-solving strategy makes the suggested alteration to the 
plan and then rechecks constraints to find any unexpected con- 
sequences. 

2. Backaround 

Modern planning systems usually distinguish the "what is" 
knowledge that captures the salient features and constraints of a 
plannings application from the strategic reasoning that effectively 
applies such knowledge to accomplish some goal.[Davis80] 
[Wilensky80] [StefikBl a]. The latter, typically termed meta-rules or 
meta-knowledge, provides an explicit and extensible representation 
of the control strategies required for intelligent planning. The CAMPS 
Metaplanning [Brown851 component provides a mechanism for 
posting goals to the system and utilizing a mix of declarative meta- 
plans and procedural standard control flows to accomplish these 
goals. In so doing, new subgoals are posted and new metaplans are 
instantiated to accomplish these subgoals. The resulting hierarchy of 
active problem-solving agents provides global control over local 
planning actions (e.g., filling in a slot or checking a constraint). 

The problem-solving agents provide CAMPS with a high-level, 
top-down view of planning and resource allocation. However, prob- 
lems with planning usually arise because some detail is out of place. 
This defect in a plan is signaled to the metaplanning component via 

1 This reporls on work conducted by the MITRE-Bedford Artifiaal Intelligence 
Center under project 84008, sponsored by N A W S C .  Additional sponsorship 
for the implementation of the CAMPS architecture was provided by the Rome Air 
Development Center, COES. 

a constraint violation. The third of CAMPS three modes of constraint 
evaluation, makemode, is intended to provide a low-level, bottom- 
up view of the planning problem by producing a structure called a 
delta-tuple that suggests some action the problem-solver might take 
to resolve the problem and eliminate the constraint violation. 

Make-mode evaluation is not guaranteed or even intended to 
provide an exhaustive list of all possible corrective actions available 
to the planning system. The metaplanning component itself can use 
high-level strategies for resolving multiple constraint violations in a 
global manner. Rather, make-mode evaluations is an attempt to 
extend the role of the CAMPS primitive operators (CAMPS 
predicates), and through the delta-tuples, involve them in the plan 
repair process. This does not absolve the metaplanning component 
from it6 primary responsibilities, Le., preventing destructive subgoal 
interactioWannihilation and limiting the combinatorics of the search 
through the space of possible plans. 

The ability to respond to unforeseen conditions in the environ- 
ment (replan) is a major design goal of CAMPS. In order to achieve 
replanning capability, problem-solving strategies and predicates 
must communicate in an orderly manner. Delta-tuples typically sug- 
gest ways of undoing some planning decision which, due to the 
limitations of CAMPS look-ahead mechanism or, more importantly, 
due to some unforeseeable change in the planning environment, that 
has made a suggested plan unacceptable. 

2.1 CAMPS'S AD~iication-SDecIfic Knowledge 

CAMPS organizes its domain knowledge around an AKO 
hierarchy of plan elements. Plan element instances represent 
specific tasks, resources, and other objects within a CAMPS 
application domain. Using the nomenclature of "frames," a plan 
element instance has associated with it a number of slots, some of 
which may contain instances of, or sets of instances of, other plan 
elements. In this way, the plan element hierarchy also represents 
some of the relationships that can exist between objects. 

3. Defining Constraints 

CAMPS views mission planning primarily as a constraint satis- 
faction problem [Stefiksl bj [Fox831. Constraints describe relation- 
ships that must hold among the slots of plan elements. In its simplest 
form, a constraint simply says that some relalionship should ahays 
be enforced ,i.e. there are no limiting conditions under which the 
constraint does not apply. This relationship is expressed as a 
predicate applied to constants and variables. Following a LISP-like 
syntax, a relationship may look like: 

(PREDICATE-SYMBOL ARGl ARG2 ... 1 .  
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Figure 1. The CAMPS 
architecture uses several types 
of declarative knowledge to 
support planning applications in 
different domains. Information 
about partially completed plans 
is kept in a relational database. 
When operating, information is 
read into working memory. 
Choices for filling slots in plan 
elements (made by the user or 
automaticallly in the user's 
behalf) are subjected to 
constraint checking. Finally, 
work is saved back into the 
database. 

Library 

\ 

C O N m T N T S  ARE Figure 2. Planning -- solving a 
ASSOCIATED WITH constraint satisfaction problem -- 
PLAN ELEMENTS IN centers on filling slots in plan elements 

subject to constraints. Types 
("capabilities of") plan elements are 
arranoed into a soecialization (AKO) 

THE HIERARCHY. 

?&s$ INHERITS ALL CONSEUINTS FROM 
h->s -, ALL COMPONENT PLAN ELEMENTS. 

WHEN A PLAN ELEMENT IS 
INSTANTIATED CONflRAINT 
INSTANCES AI& CREATED FOR 
EACH CONSTRAINT. 

- 
hierarchy along which slots (but not 
slot values) and constraints are 
inherited. 
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For example, a constraint that enforces the condition that the 
start of a task must be no earlier than the tasks earliest-start (as 
determined by some problem-sotving strategy) might be of the form: 

The variables, syntactically flagged by a leading "?", are usually 
associated with slots of a plan element, so that ?EARLIEST-START 
is a variable associated with the :EARLIEST-START slot of the plan 
element instance whose class includes the essential-event 
capability. 

(*GREATER* ?START ?EARLIEST-START) 

Constraints are central to the topic of this paper. We will show 
how the various modes of constraint interpretation interact during 
plan construction and repair. Each constraint declaration creates a 
data structure with the following attributes: 

Plan Element. The plan element that is the focus of the con- 

Involved Slots The slots for which the relationship is enforced. 
Condltlons This is a list of predicates, some of which may be 

negated. The constraint is applicable only if the 
conditions are satisfied. 

Relationshlp (Predlcate) A constraint defines a relationship 
between slots of a plan element. This relationship is ex- 
pressed as single, possibly negated predicate that 
defines the constraint. 

straint. 

Ideally, a plan should not have any violated constraints. 
However, it is naive to believe that planning problems have solutions 
in which all constraints are satisfied. The CAMPS architecture uses a 
numeric measures of that reflects the degree of belief in a constraint 
being violated. 

In addition to degree of belief, CAMPS also associates a con- 
sequence Category with every constraint. The consequence cate- 
gory provides a qualitative measure of the seriousness of the con- 
straint's violation. The consequence category helps to order the con- 
straints for evaluation and provides a metric by which problem- 
solving strategies can selectively check and relax constraints. 
Consequence categories include feasibility, survivability, success, 
efficiency and assumption. 

4. Variables in CAMPS 

CAMPS variables occur as arguments in predicate expressions. 
Generally speaking, a CAMPS variable is unrelated to a LISP 
variable. A variable typically, but not always, corresponds to a slot in 
Some plan fAement. Conversely, at an implementation level, each 
slot can be mapped to a CAMPS variable, which in turn holds what 
we heretofore have informally spoken of as "the slot's value." 

The status of a variable reflects the nature of the its value. If 
the value of a variable is unknown its status is :UNATTACHED. If it is 
bound to a single value its status is :FIXED. If there is a problem- 
solving strategy that claims to be able to suggest values for the 
variable, the variable's status is :CANDIDATES. The strategy in this 
situation is termed "a generator." 

Conceptually, a generator is a list of candidates. They are im- 
plemented as streams that return candidates from a set of 
possibilities. Number generators, for instance, provide a stream of all 
numbers between plus and minus infinity. Such a generator could 
receive a restriction messages that would restrict candidates to 
positive integers. Another :RESTRICT message sent to that 
generator could further restrict candidates to numbers less than 
seven. 

CAMPS also supports generators that deal with objects other 
than numbers. An entire class of generators deals with plan 
elements. :RESTRICT messages sent to an instance of this class of 
generators could be based on plan element capabilities. 

The primary purpose of CAMPS variables is to facilitate unifiia- 
tion. Unification is the process whereby two patterns consisting of 
constants and variables are matched in such a way as to bind 
variables in one pattern to variables in the other. Unifying two 
variables not only forces them to have the same value but ensures 
that anything that affects one will also identically affect the other. 

5. MODES of Constraint Evaluation 

5.1 Normal mode evaluatlcn 

Predicates evaluated in normal mode are treated much the 
same as predicates in formal logic. One important distinction is that a 
CAMPS predicate can indicate that insufficient information is avail- 
able: CAMPS predicates can return 'TRUE, 'FALSE (or NIL if there 
is not enough information to determine the predicate's logical value). 
Predicates in CAMPS also return two additional values: a degree of 
belief that the predicate is true and a degree of belief that the 
predicate is false. This last value is also known as the degree of 
dlsbellef. The second and third values returned support the 
Dempster-Schafer model of reasoning with uncertainty. 

The logical value returned by the predicate is a function of the 
beliefdisbelief values. If belief exceeds disbelief by a certain 
threshold, the predicate's logical value is 'TRUE. If disbelief exceeds 
belief by that threshold, the predicate's logical value is 'FALSE. If the 
difference between belief and disbelief does not exceed some mini- 
mum value, the predicate returns NIL meaning that the evaluation 
could not determine the truth or falsehood of the propositionl. 

A constraint that enforces a relationship between two slots of a 
plan element is either Satisfied or vlolated depending on the logical 
value returned by its predicate. Formally, the predicate being 'TRUE 
indicates that the constraint is VIOLATED, so that a slot is 
"acceptable" if the logical disjunction of it's constraints is *FALSE. 

5.2 Blas mode evaluatlon 

Following a general strategy of "delayed commitment" 
[Sacerdoti77j, CAMPS has the ability to "look ahead" before fixing 
the value of a slot. In bias-mode, predicates are evaluated for their 
side effects on the generators associated with the CAMPS variables 
sewing as arguments to the predicate. These side effects usually 
take the form of restricting an unattached variable to a set of accept- 
able candidates by attaching a generator to the variable, further re- 
stricting the set of a variable's candidates by sending its attached 
generator an appropriate :RESTRICT message, or (when we're 
lucky) fixing a variable's value to a single candidate. 

As planning proceeds, constraints are evaluated in bias-mode. 
producing sets of candidates for each variable associated with a slot 
of a plan element. A slot will typically have several constraints 
associated with it, all of which are trying to be satisfied. One con- 
straint will restrict a variable's value to a certain set of candidates: a 
second constraint might further restrict that set of candidates to a 
subset of the first and so on until a set of acceptable values is 
produced and/or some constraints post violations. 

This approach postpones fixing the value of a slot until as much 
information as possible has been considered, guiding the constraint 
satisfaction process towards a successful conclusion without need- 
less search through the space of (im)possible plans. 

CAMPS provides two unification contexts. In bias-true, 
unification "attempts" to return a 'TRUE result by binding the 
predicate variables appropriately; in bias-false, unification attempts 

1 Note that this scheme can distinguish between absence of information and 
contrrdlctory Infonnrllon. A MieVdisbelief pair (0.5 0.5) indcates a bt of con- 
traddocy information, while (0.0 0.0) indicates a complete absence of informa- 
tion. Since we will use the same scheme to describe 'confidence' in a suggested 
m c t i v e  action, this allows us to distinguish between a suggestion with little to 
recommend it (0.2 0.0). and a good suggestion with a lot of risk (0.6 0.4). 
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to impose restrictions on the variable that produce a 'FALSE result 
The overall effect of bias mode evaluation is to avoid search by 
initially trying to restrict variables to values that have a good chance 
of simultaneously satisfying interacting constraints. 

5.3 Make mode evaluatlon 

A Violated constraint is often serious enough that a problem- 
solving strategy will choose to try to fix it. The basic idea behind be- 
hind make-mode evaluation is that the predicate associated with the 
violated constraint has useful information about how to fix itself. 
When an unsatisfied constraint is evaluated in a make-mode, a list of 
detfa-fuples is returned. These delta-tuples suggest ways in which 
the violated constraint might be satisfied. They embody the local 
knowledge about the constraint, or more specifically, its associated 
predicate and conditions. It is the task of some higher !we1 problem- 
solving strategy to evaluate these suggestions in t e r n  of the overall 
planning goal and eventually choose one or more to execute. 

8. Usina Make- Mode Evaluation 

The three modes of constraint evaluation -- normal, blas, and 
make are dosely connected. Normal sees if the plan is in trouble; 
blas tries to keep the plan out of trouble; while make-mode suggests 
ways to keep the p h i  out of trouble it is already in. 

6.1 Cruclal Ideas 

The key elements of CAMPS'S solution to a planning problem, 
evidenced by having one or more constraint violations, depends on 
answering the following questions: 

What change can be made to a plan that will fix the problem? 
If the change is made, what is the belief that the problem will be 

corrected? 
What is the expectation that the proposed change will !rigger a 

ripple effect? That is, will fixing this problem in the -re- 
s c n i  manner introduce a dispropofiionate number of 
new and perhaps more difficult problems? 

What problem-solving strategy is responsible for making the 
change? 

Both local and global reasoning is required to address these issues 
duringplan refinement and replanning. The metaplanning 
component of CAMPS provides the global perspective. Make-mode 
evaluation of constraints and the delta-tuples returned, provides the 
local perspective. In particular the bellef that the proposed change 
will correct the difficulty combined with the dlsbelief derived from the 
ripPe likelihood provide a reasonable selection criteria upon which a 
more global criteria can be based. CAMPS uses both of these per- 
spectives in a combined topdown bottom-up approach to generate 
acceptable plans. 

6.2 Delta TuPleg 

Specifically, a delta-tuple describes a possible way to modify a 
plan element in order to satisfy a violated constraint. As such, it must 
embody the essential features of some planning action such as 
rescheduling a task, using a different number of resources or using a 
different resource altogether. Implementationally, these planning 
actions typically distill down to changing the value of some slot of 
some plan element instance. Thus, delta tuples carry the following 
information: 

Plan Element. The plan element to be modified by the delta- 
tuple. 

Slots. A list of the slots expected to change if the action sug- 
gested by this delta tuple is taken. This list gives the re- 
sponsible problem-solving agent a basis for selecting 
among alternative delta tuples. A reasonable selection 
criteria might try to localbe the effects of carrying out a 
suggested action by minimizing the number of slots 
changed. Another might try to avoid changing slots that 
the user specifically set or prefers to not change. 

Success Predicate. The predicate expression that will evaluate 
'TRUE if the suggested planning action is taken. This 
may or may not be the predicate of the constraint whose 
violation is being repaired. 

Reclplent. In all cases, the suggested action will take the form of 
a message to be sent to some message-receiving 
object. This recipient could be the plan element itself, the 
generator associated with a changing variable, or a re- 
sponsible problem-solving strategy. 

change. 

elements. 

measures which give the a prioribelief that the change 
proposed by the delta-tuple will satisfy the predicate or 
constraint. 

Message. The actual message sent to the recipient to effect the 

Arguments. The appropriate message arguments, typically plan 

Confldence Pair. A Dempster-Schafer pair of confidence 

6.3 Generatina DeltaTuDles 

The information needed to generate delta-tuples resides with 
the predicates. Each predicate has a set of general operations for 
changing the value of one or more of its arguments such that the 
predicate will be satisfied. For example, CAMPS has a predicate that 
enforces the relationship that A R G ~  must be greater than A R G ~ .  

(*GREATER* ARGl ARG2) 

Associated with the predicate are two make-true operations, 
:MAKEGREATER and :MAKE-LESS. If a violated constraint involving 
this predicate is evaluated in make-true mode, CAMPS will attempt 
to create a delta-tuple by applying the :MAKE-GREATER operation to 
A R G ~  and another delta-tuple by applying the MAKE-LESS 
operation to A R G ~ .  

In order for these operations to have any meaning in terms of 
the plan being generated, CAMPS must first trace the source of each 
variable serving as a predicate's argument. In the simplest case, the 
variable corresponds directly to a slot of a plan element. In that case, 
the delta-tuple would specify a message to be sent to a plan element 
to restrict the value of that slot variable's generator to the newly 
computed set of acceptable values. 

In summary, make-mode evaluation is built on the following 
approach: 

Each predicate has associated with it a set of general operations 
that if applied to its arguments would satisfy the 
predicate. 

Each variable bound to a predicate argument is examined to 
determine if and how these operations could be properly 
applied to the variable. 

These operations are then applied to the variable, yielding a new 
suggested value or range of values for the variable that 
promises to satisfy the predicate. It is at this point that a 
delta-tuple is created. 

7. ExamDle 

Make-mode constraint evaluation enables CAMPS to intelli- 
gently resolve the resource conflicts that present an especially diffi- 
cult problem. Most planning systems deal with many types of re- 
sources and many tasks competing for those resources. The conse- 
quence of modifying a resource allocation to satisfy one task will 
likely effect the viability of some other task. Our example is from the 
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NASA cargo loading application. Integration of experiments into 
racks for one mission will typically overlap with the rack-experiment 
deintegration of previous missions. This situation is further exacer- 
bated by schedule changes and mission payload reassignments that 
force replanning and rescheduling. 

CAMPS represents sets of homogeneous resources as 
resource-pools. in the NASA application, each rack used for holding 
a Space-Lab experiment is distinguishable, and is represented as a 
RACK unit quantity resource-pool so that racks are tracked 
individually (e.g., by serial number). A separate plan element 
including the RESOURCE-UTILIZATION capabiliiy records a single 
resource requirement being met from a single pool; it includes the 
following slots: 

:CONSUMER the task requesting the resource 

:SUPPLIER the resource-pool supplying the resource 
:BEGIN the time that the resource is first need, directed to the 

:END the time the resource is returned to the pool, directoci to the 

:RETURNING-TASKthe task returning the resource. 

:START Slot Of the :CONSUMER. 

:FINISH Slot Of the :RETURNINGTASK. 
TEARLIEST-BEGIN iS the :EARLIEST-START Of the :CONSUMER. 
:LATEST-END iS the :LATEST-FINISH Of the :RETURNING-TASK. 

RACKS include the RESOURCE-POOL capability, which tracks 
availability of the resource. Each RESOURCE-POOL includes the fol- 
lowing information in an internal (i.e., "non slot") form: 

:ALLOCATIONS A list of resource-utilizations 
:AVAILABILITY A list of sublists, each of which indicates a 

duration and the quantity of resources available during 
that duration. 

A constraint attached to the RESOURCE-UTILIZATION capabil- 
ity requires that the :SUPPLIER have sufficient quantity of the 
resource between :BEGIN and :END times. As planning progresses 
this constraint, which uses the *RESERVE* predicate in its relation- 
ship, is checked in bias-true mode. When satisfiable, a *RESERVE* 
predicate evaluated in bias-true mode will have several side effects: 

The new RACK-UTILIZATION is pushed On 10 the 
pool's ALLOCATION list and the pool is put into the 
RACK-UTILIZATION'S :SUPPLIER slot. Also, availability 
of the pool is updated to reflect the new resource 
utilization. 

A failed reservation constraint means that the designated RACK 
could not supply the quantity of resources (in this case, 1) requested 
by the :CONSUMER because some other task@) reserved the 
resource at an overlapping time interval. For example, changing a 
mission's launch date will usually cause once-successful rack utiliza- 
tions to suddenly have violated constraints involving *RESERVE* 
predicates. 

The user or an automated problem-solving strategy can focus 
on one of these constraints, and ask CAMPS to suggest corrective 
actions by evaluating the *RESERVE* predicate in the make-true 
mode. The resulting delta-tuples typically include: 

Reschedule the task's start or end time to the closest time 
when the required resource becomes available for the 
required duration. This would amount to sending a 
:RESTRICT message to the generator attached to the 
task's START or END variable in order to restrict its value 
to a new acceptable range. 

Change the resource requirement if the task's requirements 
can be met by some other resource with similar 
capabilities or by some other resource-pool. 

Modlfy conflicting tasks by finding those reservations in the 
resource pool whose rescheduling would enable the 
task-at-hand's resource requirement to be met and 
reschedule those reservations. 

Reduce the quantity of resources requested by the task to the 
number of resources available at the time. For resource- 
pools of only one resource, (as is the case with experi- 
ment racks) this is not an option and for those cases 
CAMPS will not generate a delta-tuple that suggests 
using zero of that resource. 

A simple example dealing with rack resources is shown in 

laps with the RACK-INTEGRATION task of STS-1003. In this particular 
case, the same rack SN003-s is desired by both tasks. The rack- 
resource-utilization associated with STS-1003 posts a constraint 
violation that reflects its failure to reserve its desired resource. 
Figure-6 shows the delta-tuples returned by re-evaluating that con- 
straint in make-mode. 

The belief/disbelief pairs shown embody several general con- 
siderations. Each one of these tasks has an earliest and latest start 
and earliest and latest finish that represent acceptable slack in the 
schedule. For the delta-tuples dealing with changing start and end 
times, the belief decreases and the disbelief increases as the 
difference between the original and suggested time increases.(figure 
5) For the delta-tuples that suggest using another resorlrce, 'le 
belief is a function of the number of other resources in that pool 
and/or the number of pools with the same rack capabilitys. 

Only a glance at figure-6 shows that one delta-tuple seems the 
most likely to succeed. The final step in the planning process is to 
invoke the chosen delta-tuple by sending the message and 
arguments off to the specified recipient. 

figure-3. The RACK-DEINTEGRATION task Of mission STS-10022 over- 

\CK-I 'EGRAII N 
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I 

Figure 3. A Gantt chart showing a very 
small portion of a payload preparation 
for two hypothetical space lab 
missions. Rack integration -- putting 
experiments into racks and racks into 
the module -- is the consumer task of 
racks, while rack deintegration readies 
the rack for reuse. 
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Figure 4. Calculating a belief 
and disbelief for a suggestion. 
Given the number of pools 
believed acceptable but not yet 
considered (e.g., the number 
of remaining candidates) and 
the number of pools. calculate 
the ratio. A low ratio indicates 
that most potential candidates 
have been rejected. Disbelief is 
a constant, perhaps derived 
from the type of the resource. 
Normalization forces the belief 
and disbelief to total less than 1 
by multiplying each by 
1 I(belief+disbelief) when their 
sum exceeds 1.0. 

i n  I . . . . . . .  . . . . . . . .  
. . . .  . .  . . . .  . ;  ... max-belief 

I I : I 
Constant disbelief rr=-i Disbelief 

min-belief. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Ratio of acceptable pools unconsidered (assume: 1) 
to pools at facility (assume: number of instances) > 

Case 1: Resource is available before task's latest start 

Case 2: Resource is first available after task's latest start Figure 5. Unnormalized belief 

1.0 
max-belief 1. . . .  . . . . .  

. . . . .  

TIME > 

and disbelief as a function of 
the delayed start. Two arbitrary 
constants are used: a constant 

' * describing how much more 
. . . . .  . . . . . .  . . disbelief increases as a 

function of time after the start 
is delayed beyond the currently 
assumed "latest start: " and a 
constant which, when 
multiplied by the task's current 

* duration, gives a tolerance. 
Two cases are shown: (1) 

. shows the resource becoming 
available before the task's 
latest start; (2) shows the 
resource becoming available 
after the task's latest start. 

. . . . . .  

Plan 
Element 

Slots Message Recipient Confidence 
Pair 

(0.65 0.35) Overall-Rack- (:END) :DELTA-RE=RI~  Overall-Rack- 
Deintgration-1002 Suggests to finish &integration earlier Deintgration-1002 

Overall-Rack- (:START) :DELTA-REnRICT Overall-Rack- (0.35 0.45) 
Integration-1003 Suggests to start integration later Integration-1003 

(0.1 0.8) m - 1 0 0 2  (:START) :DELTA-RE!TIRICT STS-1002 
Suggests to switch in mission sequence 

Rack-Resource- (SUPPLIER) :DELTA-RE!TIRICT Rack-Resource- (0.1 0.8) 
Uti'ization-1002 Utiliza tion-1002 suggests using a different rack 

Figure 6. Given the constraint violation of figure 3, EMPRESS-II returned four delta-tuples as shown by this table. While we argue that 
selecting the "best" delta-tuple should be mediated by higher-level problem-solving strategies, we can see that simply picking the 
"most believed" suggestion is a good general heuristic. 
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Top-down oal-driven 
problem-so B ving strategy 

f 
/ 

Yeeds 

Bottom-up su gestion 
from local anaysis ? of situation 

8. Conclusion 

Like many recent planning systems, CAMPS builds on a 
hierarchically structured metaplanning component. This component 
represents the planning system's "self-knowledge" and is used to 
Control the application of primitive operators (CAMPS predicates) 
towards plan realbation. In addition, make-mode constraint 
evaluation imbues the CAMPS primitive operators themselves with a 
degree of "self knowledge." When the planning process runs into 
difficulties, a dialog commences between a globally-oriented 
problemsolving strategy and the local constraint instances. The 
dialog is initiated by a problem-solving strategy that examines the 
violated constraints and selects one or more to evaluate in make- 
mode. These constraint instances dutifully return a list of suggestions 
embodied in the delta-tuples. 

The returned delta-tuples are examined by the problem solving 
strategy which can choose one or more to apply or seek some aler- 
native means of plan repair altogether. The purpose of the delta- 
tuples is to pose those simple alternatives that would typically cause 
a minimum of plan disruption and reconstruction. They embody the 
generally accepted heuristic of any intelligent problem solver: 
"Consider the easy things first." 
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